The Games Show

Guidelines for Planning and Implementing the Use of Commercial Games for Learning

Joanne Gikas
Richard Van Eck, Ph.D.
University of Memphis
http://idt.memphis.edu/~rvaneck/NLII.html
What Are the Assumptions of This Presentation?

A. You’re Aware of Rationale for Using Games for Learning
B. You Want a Practical Guide to Integrating Games in the Classroom
C. Cost to Develop Games Precludes Widespread Development by Educators
D. All of the Above
What Are the Assumptions of This Presentation?

A. You’re Aware of Rationale for Using Games for Learning
B. You Want a Practical Guide to Integrating Games in the Classroom
C. Cost to Develop Games Precludes Widespread Development by Educators
D. All of the Above
Assumptions & Approach

We assume you:
- Know why games can be effective
 - Anchored Instruction, Situated Learning & Cognition, Play Theory, Intrinsic Motivation
- Want to know how to begin

Are Two Basic Approaches
- Design new games
- Implement existing games
- Not mutually exclusive

Our Focus
- Use instructional design process
- Focus on learning & game taxonomies
Which of the Following Is TRUE About Games in Learning Environments?

A. Games Are a Panacea for Technology-Based Learning

B. Integrating Games in the Classroom Is Quick, Easy, & Inexpensive

C. Any Game Can/Should Be Used for Problem-Solving & Motivation

D. None of the Above
Which of the Following Is TRUE About Games in Learning Environments?

A. Games Are a Panacea for Technology-Based Learning
B. Integrating Games in the Classroom Is Quick, Easy, & Inexpensive
C. Any Game Can/Should Be Used for Problem-Solving & Motivation
D. None of the Above
Games are No Panacea

Like Any Technology Integration, Takes Time
- Easy to make non-effective learning material
- Not for all topics, learners, or environments
- Expensive to integrate & implement
 - Expense of installation and maintenance in lab environments
 - Higher cost of required hardware
 - Shared space issues (saved games, speakers vs. headphones)

Games are effective ONLY if:
- Instruction is matched to the medium (e.g., Kozma, 1985)
- Content is integrated with the game (e.g., not just for motivation)
Playing the Matching Game

Not All Games Alike
- Card games, video “arcade” style games, & interactive adventure games:
 - different strategies, different learning supported
- Analyze individually for underlying strengths and strategies

Matching Game and Learning Taxonomies
- Learning taxonomies can be matched to game taxonomy
- A beginning (Gagne, Bloom, & Bates’ Taxonomies--handout)

Games & Problem Solving
- Handout shows games CAN be effective at all taxonomy levels
- Problem solving/synthesis is often missing in instruction (time, difficulty)
- Adventure games may be best for higher levels (problem-based; subordinate skills/knowledge)

Like Thematic Units
- Theme organizes and structures individual lessons, topics, and units
- Game can serve same purpose, but much is prescribed already
Choosing the Game

Choosing a Suitable Game

Sometimes Topic Matches Content of Course

<table>
<thead>
<tr>
<th>Game</th>
<th>Game Content</th>
<th>Course Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Empires, Civilization</td>
<td>History</td>
<td>History</td>
</tr>
<tr>
<td>Sim City</td>
<td>Geography, Civil Engineering</td>
<td>Geography, Civil Engineering</td>
</tr>
<tr>
<td>Law & Order, C.S.I.</td>
<td>Criminal Justice</td>
<td>Criminal Justice</td>
</tr>
</tbody>
</table>
Choosing the Game

Choosing a Suitable Game

Other times, Gameplay Matches Content of Course

<table>
<thead>
<tr>
<th>Game</th>
<th>Gameplay</th>
<th>Course Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraption, Roller Coaster Tycoon</td>
<td>Build Machines To Specification & Tolerances</td>
<td>Physics, Mathematics, Engineering</td>
</tr>
<tr>
<td>Cruise Ship Tycoon</td>
<td>Manage Budgets, Purchase Supplies, Ensure Financial Success</td>
<td>Business, Economics, Resort Management</td>
</tr>
</tbody>
</table>
Which of the Following Is TRUE?

A. Liking & Playing Games Yourself Has No Relevance to Teaching With Them

B. Students Universally Enjoy Computer Games

C. Computer Games Make Teamwork Impractical (one game = one student)

D. None of the Above
Which of the Following Is TRUE?

A. Liking & Playing Games Yourself Has No Relevance to Teaching With Them

B. Students Universally Enjoy Computer Games

C. Computer Games Make Teamwork Impractical (one game = one student)

D. None of the Above
Analysis & Design: People

One Size Does NOT Fit All

Are Your Students Game?
- Play games? (speed and familiarity)
- Individual differences (gender, etc.)
- Access to appropriate computers?

Have You Got Game?
- Do you play computer games?
- What is YOUR approach to game play? (linear vs. non-linear)
- How do your answers to these questions match your students?
- Must know the game THOROUGHLY (start to finish and then some)
Analysis & Design: Resources

Environment
- Your Computer
- School Computers
- Access to Computers
 - During and outside of class

Gathering Resources
- Game Web Sites
 - Patches
 - FAQs
- Walkthroughs
- Hint Books
- CNN (Children, Nephews, & Nieces)
Analysis & Design: The Game

Things to Consider

Interface
- Game management (inventory, save game, etc.)
- Navigation (ease of, flow)

Instructional/Learning Factors
- What type/level of learning is supported by game (taxonomy)?
- What type/level of learning is supported by puzzle (taxonomy)?
- What is the relation of puzzles to story, plot, and/or goal (flow)?
- What types of strategies are promoted by game/puzzles? (trial & error vs. scientific method)

Learner Characteristics
- Protagonist/learner representation (Avatar)
- Intended audience
- Does this match well with your learners?
Analysis & Design: The Game

Things to Consider

Suitable for Groups or Individuals?
- Collaboration has pedagogical value
- Collaboration has practical value (group play minimizes resources, maximizes your time to facilitate)
- Game may not be designed for it, but may support it

How Long Does it Take to Play?
- Good players take less time

Is it Linear or Is There Learner Control?
- Linear means the game experience is identical for all
- Learner control means there are different experiences for different learners
- Either activities accommodate different experiences, or lesson/unit controls the learner experience
Analysis & Design: Content

It’s in the Game

What IS Covered?
- Topics focus on breadth or depth?
- Which topic(s) will you focus on?

What IS NOT Covered?
- Missing topics (breadth)
- Missing content within topic (depth)
- Pre-requisite knowledge required

What IS Wrong? (teachable moments)
- Inaccurate information
- Misleading information
- Alternate viewpoints/interpretations
- Inappropriate/incorrect strategies
Based on Analysis, What About:

- **Missing & Inaccurate Content**
 - Which content will you have to add?
 - Who will provide this? (you, students, both)
 - Maximize learner responsibility

- **Activities**
 - What instructional activities can you create to maximally address weaknesses (e.g., missing/inaccurate content)?

- **Is It Worth the Time?**
 - Is the amount of potential learning justified by the amount of work and time to implement the game?
 - Must be willing to admit it is not!
Which of the Following Is A GOOD Way to Integrate Games?

A. Play the Game, Then Study the Content and Refer Back to the Game

B. Study the Content, Then Use the Game for Application & Assessment

C. Alternate Playing the Game With Activities That Extend the Game/Learning

D. All of the Above
Which of the Following Is A GOOD Way to Integrate Games?

A. Play the Game, Then Study the Content and Refer Back to the Game

B. Study the Content, Then Use the Game for Application & Assessment

C. Alternate Playing the Game With Activities That Extend the Game/Learning

D. All of the Above*
Instructional Activities

Top-down or Bottom-up
- Game as Frame for New Learning (top-down)
- Game as Chance to Synthesize and Apply Pre-learned Skills (bottom-up)

Hybrid

Stay in the Game

Flow & Gaming
- Games can promote optimal flow experiences
- Flow may be optimal learning state
- Interruptions to game equal interruptions to flow
- Maximize game time AND focus on game world
Instructional Activities

Staying in the Game

- Intrinsic Motivation (Malone & Lepper, 1987)
 - Endogenous vs. exogenous fantasy (in relation to content)
 - Endogenous fantasy will promote flow
 - When not IN game, keep activities & roles endogenous TO game

Types of Activities (handout)

- Math & Numbers
 - Budgets, spreadsheets, reports/charts, databases

- Writing
 - Diary, scientific report, letters, legal briefs, dictionary, faxes
 - Multiple viewpoints

- Science
 - Design, duplicate, conduct experiments (endogenously!)
 - Conduct/write up feasibility studies
 - Hypothesis testing